Abstract

A simple and stable cataluminescence (CTL) sensing platform based on a single sensing material for effective and rapid detection of aldehydes is an urgent need due to growing concerns for the environment, security, and health. Here, an effective and user-friendly identification method is successfully proposed to determine six common aldehydes of homologous compounds via a heterothermic CTL sensor system. Using Gd2O3 with excellent catalytic activity as a sensing material, thermodynamic and kinetic insights into the interactions between Gd2O3 and aldehydes at different temperatures were extracted and integrated to generate a unique constellation profile for each tested aldehyde, whereby achieving their effective and prompt determination. Moreover, the sensor system allowed the quantitative analysis of aldehydes with detection limits of 0.001, 0.009, 0.011, 0.011, 0.007, and 0.003 μg mL-1. Significantly, the sensor system had an excellent stability of up to 30 days. The CTL sensing platform was constructed based on a thermal regulation strategy that can provide a new approach to chemical agent identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.