Abstract

It is of utmost importance to explore bifunctional electrocatalysts for water splitting. Herein, unique ZnCo2O4-CoOOH heterostructured ultrathin nanosheets on Ni foam are reported that combines a two-step hydrothermal method. This catalyst exhibits excellent catalytic performances to achieve a current density of 10 mA cm-2 with an ultralow overpotential of 115 mV for HER, attaining an overpotential of 238 mV at 20 mA cm-2 for OER. Remarkably, ZnCo2O4-CoOOH/Ni shows a voltage of 1.494 V to drive a current density of 10 mA cm-2. Such performances are due to the inter-penetrative pores present in the ultrathin nanosheets that provide large surface areas and expose massive active sites to enhance activities. In addition, the unique nanosheet structure and the 3D Ni foam substrate possess large specific surface areas, which can facilitate mass diffusion. This excellent performance is ascribed to the ZnCo2O4-CoOOH heterostructure that manipulates strong synergy to improve the electrochemical activity. This study offers new insight on an innovative approach for the exploitation of effective bifunctional electrocatalysts with a heterostructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.