Abstract

Graphene oxide lamellar 2D membranes are widely researched for ion separation and molecular sieving in aqueous solution. Extension of the research of GO-based membranes for organic solvent nanofiltration has drawn much attention but is still in its infancy. The relatively low solvent permeability remains a difficult problem to overcome. Inspired by the shell of the Namib Desert beetle, a heterostructured lamellar membrane was prepared by incorporating MoS 2 quantum dots (MQDs) into the graphene oxide membrane. A dual-functional zone was formed, where hydrophilic areas exhibited excellent absorption performance for polar solvents and hydrophobic regions were propitious to the discharge of polar solvents when incorporating a moderate amount (10%) MQDs, denoted as GM-10 (nonpolar solvents presented the opposite performance). The synergistic effects of the dual-functional zone successfully improved the transport efficiency for various solvents, and the flux of various solvents for GM-10 was over three times higher than that of the pure GO membrane. Simultaneously, the composite biomimetic membrane showed excellent stability. This paper provides a novel strategy for constructing a heterostructured dual-functional zone for 2D lamellar membrane modification without the sacrifice of rejection, revealing the potential for further optimization of separation performance and membrane stability. • The biomimetic membrane was prepared by adding MoS 2 quantum dots into graphene oxide membrane. • Heterostructured dual-functional zone was formed, enhancing the transport efficiency. • The membrane showed excellent balanced separation performance for various dye organic solvents. • The membrane showed high stability in harsh condition and long-term operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.