Abstract

Opsonization of particulate pathogens by antibodies and complement can lead to their binding to the complement receptor (CR1), specific for C3b, on primate erythrocytes (E). This process of immune adherence may play a role in immunologic defense by immobilizing bacteria and viruses, thus preventing them from leaving the bloodstream to invade susceptible tissue and organs. Immune adherence of C3b-opsonized and immune complexed pathogens to E may also facilitate their transfer to, and destruction by, fixed tissue macrophages. We have used mAbs specific for CR1 crosslinked with pathogen specific mAbs to generate heteropolymers (HP) which can bind a wide range of substrates to primate erythrocytes. Both prototype and bonafide pathogens bound to primate E via HP are handled in the circulation of non-human primates in a manner which appears to be virtually identical to the mechanism by which C3b-opsonized substrates bound to E CR1 are cleared. In this process of focused phagocytosis, Fc receptors on the phagocytic cell engage the E-bound complex, CR1 is removed by proteolysis, and the entire immune complex and CR1 are internalized while sparing the E. It may be possible to use HP to target pathogens in the bloodstream in a wide range of therapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.