Abstract
The structures of silicon-containing organophosphorus betaines –S—SiR1 2—CR2 2—P+R3 3 and their ylide isomers were calculated using the density functional approach with the gradient-corrected PBE functional and extended TZ2P basis set. Three possible pathways of thermal decomposition of these betaines were analyzed. These are (i) cleavage of the central C—Si bond with the formation of a Wittig ylide and silanethione, (ii) intramolecular nucleophilic S N-substitution with elimination of phosphine PR3 3 and the formation of silathiirane (the Corey—Chaikovscky transformation), and (iii) a Wittig-type decomposition followed by the formation of substituted silaethylene. The structures of products and transition states of these reactions were calculated. The cis-gauche conformation of the –S—Si—C—P+ fragment of betaines was found to be the most stable. This is in agreement with the results of X-ray diffraction study and can be rationalized by strong Coulomb attraction between the cationic and anionic centers. The betaines are stable toward retro-Wittig thermal decomposition. The Corey—Chaikovscky formation of thiirane is preferable under conditions of thermal decomposition. Retro-Wittig-type decomposition of betaines followed by the formation of silanethione is favored by intra- and intermolecular coordination of donor ligands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.