Abstract

Post-consumer plastic waste in the environment has driven the scientific community to develop deconstruction methods that yield valued substances from these synthetic macromolecules. Electrocatalysis is a well-established method for achieving challenging transformations in small molecule synthesis. Here we present the first electro-chemical depolymerization of polyoxymethylene—a highly crystalline engineering thermoplastic (Delrin®)—into its repolymerizable monomer, formaldehyde/1,3,5-trioxane, under ambient conditions. We investigate this electrochemical deconstruction by employing solvent screening, cyclic voltammetry, divided cell studies, electrolysis with redox mediators, small molecule model studies, and control experiments. Our findings determine that the reaction proceeds via a heterogeneous electro-mediated acid depolymerization mechanism. The bifunctional role of the co-solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) is also revealed. This study demonstrates the potential of electromediated depolymerization serving as an important role in sustainable chemistry by merging the concepts of renewable energy and circular plastic economy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.