Abstract

Heart diseases alter the rhythmic behaviors of cardiac electrical activity. Recent advances in sensing technology bring the ease to acquire space-time electrical activity of the heart such as vectorcardiogram (VCG) signals. Recurrence analysis of successive heartbeats is conducive to detect the disease-altered cardiac activities. However, conventional recurrence analysis is more concerned about homogeneous recurrences, and overlook heterogeneous types of recurrence variations in VCG signals (i.e., in terms of state properties and transition dynamics). This paper presents a new framework of heterogeneous recurrence analysis for the characterization and modeling of disease-altered spatiotemporal patterns in multi-channel cardiac signals. Experimental results show that the proposed approach yields an accuracy of 96.9%, a sensitivity of 95.0%, and a specificity of 98.7% for the identification of myocardial infarctions. The proposed method of heterogeneous recurrence analysis shows strong potential to be further extended for the analysis of other physiological signals such as electroencephalogram (EEG) and electromyography (EMG) signals towards medical decision making.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.