Abstract

Taylor's Power Law for the temporal fluctuation in population size (TL) posits that the variance in abundance scales according to aMb; where M is the mean abundance and a and b are the ‘proportionality’ and ‘scaling’ coefficients. As one of the few empirical rules in population ecology, TL has attracted substantial theoretical and empirical attention. Much of this attention focused on the scaling coefficient; particularly its ubiquitous deviation from the null value of 2. Here we present a line of reasoning that challenges the power-law interpretation of the empirical log-linear relationship between the mean and variance of population size. At the core of our reasoning is the proposition that populations vary not only with respect to M but also with respect to a; which leaves the log-linear relationship intact but forfeits its power-law interpretation. Using the stochastic logistic-growth model as an example, we show that ignoring among-population variation in a is akin to ignoring the variation in the intrinsic rate of growth (r). Accordingly, we show that the slope of the log-linear relationship (b) is a function of the among-population (co)variation in r and the carrying-capacity. We further demonstrate that local environmental stochasticity is sufficient to generate the full range of observed values of b, and that b can in fact be insensitive to substantial differences in the balance between variance-generating and stabilizing processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.