Abstract

We examine the heterogeneous responses of individual nodes in sparse networks to the random removal of a fraction of edges. Using the message-passing formulation of percolation, we discover considerable variation across the network in the probability of a particular node to remain part of the giant component, and in the expected size of small clusters containing that node. In the vicinity of the percolation threshold, weakly non-linear analysis reveals that node-to-node heterogeneity is captured by the recently introduced notion of non-backtracking centrality. We supplement these results for fixed finite networks by a population dynamics approach to analyse random graph models in the infinite system size limit, also providing closed-form approximations for the large mean degree limit of Erdős-Rényi random graphs. Interpreted in terms of the application of percolation to real-world processes, our results shed light on the heterogeneous exposure of different nodes to cascading failures, epidemic spread, and information flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.