Abstract

Stimuli-responsive hydrogels can sense environmental cues and change their volume accordingly without the need for additional sensors or actuators. This enables a significant reduction in the size and complexity of resulting devices. However, since the responsive volume change of hydrogels is typically uniform, their robotic applications requiring localized and time-varying deformations have been challenging to realize. Here, using addressable and tunable hydrogel building blocks-referred to as soft voxel actuators (SVAs)-heterogeneous hydrogel structures with programmable spatiotemporal deformations are presented. SVAs are produced using a mixed-solvent photopolymerization method, utilizing a fast reaction speed and the cononsolvency property of poly(N-isopropylacrylamide) (PNIPAAm) to produce highly interconnected hydrogel pore structures, resulting in tunable swelling ratio, swelling rate, and Young's modulus in a simple, one-step casting process that is compatible with mass production of SVA units. By designing the location and swelling properties of each voxel and by activating embedded Joule heaters in the voxels, spatiotemporal deformations are achieved, which enables heterogeneous hydrogel structures to manipulate objects, avoid obstacles, generate traveling waves, and morph to different shapes. Together, these innovations pave the way toward tunable, untethered, and high-degree-of-freedom hydrogel robots that can adapt and respond to changing conditions in unstructuredenvironments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.