Abstract

The development of low cost electrocatalysts with excellent I−/I3− redox reaction efficiency is critically important for practical applications of dye-sensitized solar cells (DSSCs). Nevertheless, it is difficult to simultaneously improve the activity and stability of catalysts. Herein, heterogeneous FeNi3/NiFe2O4 nanoparticles are successfully embedded in modified graphene (mGr) matrix with network structure. As-prepared FeNi3/NiFe2O4@mGr shows excellent electrocatalytic activities and high stability. The DSSCs with FeNi3/NiFe2O4@mGr as counter electrodes demonstrate a high power conversion efficiency of 12.14%, which is superior to that of platinum (Pt, 8.31%). Also, the FeNi3/NiFe2O4@mGr device remains 90% efficiency up to 42 days under ambient conditions without encapsulation. Therefore, the FeNi3/NiFe2O4@mGr composite can be further developed as an environmentally friendly, inexpensive, and efficient counter electrode material for DSSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.