Abstract

Self-supporting electrodes have triggered great interests in improving electro-Fenton (EF) system for degradation of refractory organic pollutants. In this work, a novel self-supporting carbon fiber paper (CFP) electrode modified by transition metals, e.g. Fe and Mn, was fabricated and employed as a heterogeneous EF cathode. The prepared electrode exhibited excellent degradation for a number of typical organic pollutants along with superior stability. Remarkably, a high removal efficiency was achieved in the EF treatment of shale gas fracturing flowback wastewater. Results indicated that 65.2% TOC and 74.8% COD were eliminated after 4 h degradation. The residual COD value of the real wastewater was 80 mg L−1, meeting the emission requirement of the integrated wastewater discharge standard (COD<100 mg L−1) with a low specific energy consumption of 6.9kWhkg−1COD−1. This work demonstrates a competing alternative for efficient decontamination of real wastewater using an electro-Fenton strategy with a low-cost electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.