Abstract

We give exact analytical results for diffusion with a power-law position dependent diffusion coefficient along the main channel (backbone) on a comb and grid comb structures. For the mean square displacement along the backbone of the comb we obtain behavior 〈x2(t)〉∼t1/(2−α), where α is the power-law exponent of the position dependent diffusion coefficient D(x) ∼ |x|α. Depending on the value of α we observe different regimes, from anomalous subdiffusion, superdiffusion, and hyperdiffusion. For the case of the fractal grid we observe the mean square displacement, which depends on the fractal dimension of the structure of the backbones, i.e., 〈x2(t)〉∼t(1+ν)/(2−α), where 0 < ν < 1 is the fractal dimension of the backbones structure. The reduced probability distribution functions for both cases are obtained by help of the Fox H-functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.