Abstract

Addition of urea-based antifreeze admixtures during cement mixing can make it possible to concrete cement in construction of buildings in cold weather. This, however has led to increasing indoor air pollution due to continuous transformation and emission from urea to gaseous ammonia in indoor concrete walls. In order to control ammonia from indoor concrete walls, aqueous dispersion of nano-titanium dioxide (TiO2) was prepared and mixed with silicone additive to establish a treating bath. Cotton fabrics were finished with this treating bath by using pad-dry-cure process and then characterized by X-Ray Diffractometer, Infrared Fourier Transform Spectrometer and Scanning Electron Microscope. The gaseous ammonia was derived from an environmental condition simulated chamber. The heterogeneous decomposition of gaseous ammonia by UV/TiO2 process in an annular photoreactor fixed with the TiO2-coated cotton fabric was studied under various dosages of aqueous nano-TiO2 dispersion, initial ammonia concentration, relative humidity and gas flow rate. A design equation of surface catalytic kinetics was developed for describing the decomposition of ammonia in air streams by UV/TiO2 process at given operating conditions. Experimental results indicated that increasing dosage of aqueous nano-TiO2 dispersion improved the ammonia decomposition of cotton fabric, which was prepared. At a constant temperature of 25°C, ammonia in the air stream was effective removed by decreasing initial ammonia concentration and gas flow rate. For moisture in the range of 15-65%, when the relatively humidity level was increased to 45%, the decomposition of ammonia was remarkably enhanced, and the decomposition of ammonia could be inhibited by excessive moisture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.