Abstract

Metal-organic frameworks (MOFs) have emerged as promising candidates for enzyme mimics due to their abundant pore structures and adjustable active sites. The catalytic activity particularly depends on the electronic character of the organic ligand. In this study, we report an iron-based MOF nanozyme FeTDC, created by replacing the 1,4-dicarboxybenzene ligand with five-membered 2,5-thiophenedicarboxylic acid (H2TDC). In comparison with the phenyl analogue, the sulfur-based heterocyclic ligand demonstrates high electron delocalization, and a low pKa value, which are beneficial for enhancing the metal/ligand interactions. Accordingly, FeTDC can facilitate the oxidation of the benzidine substrate in the presence of H2O2, thereby exhibiting remarkable peroxidase-like activity. The generation of hydroxyl radical (•OH) at the Fe active sites contributes to the catalytic process. Furthermore, the smartphone-assisted colorimetric assay of pyrophosphate was developed with high sensitivity, based on its inhibitory effect. When FeTDC was utilized for the removal of benzidine dye under high-salt condition, a 90 % of removal rate was achieved due to the synergistic effect of enzyme catalysis and physical adsorption. This work presents a novel perspective of heterocyclic effect on the design of MOF nanozymes, thereby expanding their applicability in the control of pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.