Abstract

Heterocyclic aromatic amines (HAs) represent a class of potent bacterial mutagens and rodent carcinogens which gain their biological activity upon metabolic conversion by phase I and phase II enzymes. Subsequent to cytochrome P450 (CYP)-dependent hydroxylation, mainly catalyzed by CYP1A2, acetylation mediated by the activity of N-acetyltransferase, NAT2, produces the ultimate electrophilic product that may react with DNA. In addition to point mutations observed in HA-exposed cells as genotoxic endpoint in vitro, loss of heterozygosity (LOH) has often been identified in HA-related rodent tumors as another endpoint in vivo. LOH may reflect a chromosomal deletion, a chromosome loss or a previous mitotic recombination event and it represents a prominent mechanism for the inactivation of tumor suppressor alleles. In this study we have investigated whether LOH observed in several HA-induced rodent tumors is related to a recombinogenic activity of HA compounds, and to address this question we have studied the genotoxic activity of several HAs in metabolically competent Saccharomyces cerevisiae strains. For this purpose expression vectors have been constructed providing simultaneous expression of three human enzymes, CYP1A2, NADPH-cytochrome P450 oxidoreductase and NAT2 in different genotoxicity tester strains. Evidence for functional expression of all three enzymes has been obtained. One strain allowed us to monitor HA-induced gene conversion, another one HA-induced chromosomal translocation. A third strain allowed us to study HA-induced forward mutations in the endogenous URA3 gene. It was found that 2-amino-3-methylimidazo-[4,5-f]quinoline and 2-amino-3, 8-dimethylimidazo-[4,5-f]quinoxaline produced a strong recombinogenic response in either recombination tester strain. The recombinogenic activity was comparable with the mutagenic activity of the compounds. The other HAs, 2-amino-3, 4-dimethyl-imidazo-[4, 5-f]quinoline, 2-amino-6-methyldipyrido-[1,2-a:3',2'-d]imidazole, 2-aminodipyrido-[1,2-a:3', 2'-d]imidazole, 3-amino-1-methyl-5H pyrido-[4,3-b]indole and 2-amino-1-methyl-6-phenyl-imidazo-[4, 5-b]pyridine, produced weak or no increases in the genotoxic endpoints of interest. The described strains may provide a suitable tool to characterize the genotoxic potential of HAs in more detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.