Abstract

Heterobimetallic [Ni(salen)Ln(hfa)3] species [H2salen and Hhfa being N,N′-ethylenebis(salicylideneimine) and hexa-fluoroacetylacetone respectively], where Ni(salen) acts as a neutral chelating ligand towards LnIII, form a series of isostructural compounds for Ln = YIII and any lanthanideIII cation from La to Yb. They are also isostructural with some of the [Cu(salen)Ln(hfa)3] compounds. They sublime without decomposition under vacuum which makes them potential single-source precursors in MOCVD. Sublimation, thermal behaviour, pressure and composition of the vapour phase versus temperature have been studied for the yttrium derivative, by means of thermal analyses, and mass spectrometry using a Knudsen cell. The dissociation process [Ni(salen)Y(hfa)3] = Ni(salen) + Y(hfa)3 has been thermodynamically investigated. Information on the solid-state intermolecular interactions in relation with volatility was obtained through the crystal structure determination of the gadolinium derivative. A comparative structural study of [Ni(salen)Gd(hfa)3] and [Cu(saloph)Y(hfa)3], [H2saloph is N,N′-o-phenylenebis(salicylideneimine)], allows to under-stand why the latter is less volatile than the former despite similar molecular and solid-state structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.