Abstract

We describe a biomimetic mode of insoluble signaling stimulation to provide target delivery of bone morphogenetic protein-2 (BMP-2), with the aim of prolonging the retention of BMP-2 use in bone tissue engineering and to enable its localized release in response to cellular activity. In our novel localization process, we used heterobifunctional acrylate-N-hydroxysuccinimide poly(ethylene glycol) (PEG) as a spacer to tether BMP-2 onto a poly(lactide-co-glycolide) scaffold. Use of PEG-tethered BMP-2 was feasible because BMP-2 retained its activity after covalent conjugation. The PEG-tethered BMP-2 conjugate sustained stimulation and retained its mitogenic activity, notably affecting pluripotent stem cell proliferation and differentiation. We seeded the scaffolds with bone marrow-derived mesenchymal stromal cells as progenitor cells to evaluate their morphology and phenotypic expression. We also created bilateral, full-thickness cranial defects in rabbits to investigate the osteogenic effect of cultured mesenchymal stromal cells on bone regeneration in vivo. Histomorphometry and histology demonstrated that the PEG-tethered BMP-2 conjugate enhanced de novo bone formation after surgery. Our work revealed the potential for biomimetic surface engineering by entrapping signaling growth factor to stimulate osteogenesis. Our technique may provide a new platform for bone-engineered stem cell therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.