Abstract

As an attractive cathode candidate for sodium-ion batteries, P2-type Na2/3Ni1/3Mn2/3O2 is famous for its high stability in humid air, attractive capacity, and high operating voltage. However, the low Na+ transport kinetics, oxygen-redox reactions, and irreversible structural evolution at high-voltage areas hinder its practical application. Herein, a comprehensive study of a microbar P2-type Ni2/3Ni1/4Mg1/12Mn2/3O2 material with {010} facets is presented, which exhibits high reversibility of structural evolution and anionic redox activity, leading to outstanding rate capability and cyclability. The notable rate performance (53 mA h g-1 at 20 C, 2.0-4.3 V) contributed to the high exposure of {010} facets via controlling the growth orientation of the precursor, which is certified by density functional theory calculation and lattice structural analysis. Mg substitution strengthens the reversibility of anionic oxygen redox and structural evolution in high-voltage areas that was confirmed by the in situ X-ray diffraction and ex situ X-ray photoelectron spectroscopy tests, leading to outstanding cyclic reversibility (68.9% after 1000 cycles at 5 C) and slowing down the voltage fading. This work provides new insights into constructing electrochemically active planes combined with heteroatom substitution to improve the Na+ transport kinetics and structural stability of layered oxide cathodes for sodium storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.