Abstract

This paper describes how the ability to tune each nanoparticle in a plasmonic hetero-oligomer can optimize architectures for plasmon-enhanced applications. We demonstrate how a large-area nanofabrication approach, reconstructable mask lithography (RML), can achieve independent control over the size, position, and material of up to four nanoparticles within a subwavelength unit. We show how arrays of plasmonic hetero-oligomers consisting of strong plasmonic materials (Au) and reactant-specific elements (Pd) provide a unique platform for enhanced hydrogen gas sensing. Using finite-difference time-domain simulations, we modeled different configurations of Au–Pd hetero-oligomers and compared their hydrogen gas sensing capabilities. In agreement with calculations, we found that Au–Pd nanoparticle dimers showed a red-shift and that Au–Pd trimers with touching Au and Pd nanoparticles showed a blue-shift upon exposure to both high and low concentrations of hydrogen gas. Both Au–Pd hetero-oligomer sensors displayed high sensitivity, fast response times, and excellent recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.