Abstract
A Li0.17La0.61TiO3(111)/LiMn2O4(111) solid electrolyte/electrode hetero-epitaxial system with applications in all solid-state batteries has been synthesized on a SrRuO3(111)/SrTiO3(111) substrate using pulsed laser deposition. XRD patterns provided evidence for the epitaxial growth of Li0.17La0.61TiO3(111) on LiMn2O4 at a low deposition temperature of 750 °C. X-ray reflectivity analysis confirmed that the low temperature deposition resulted in intimate contact between LiMn2O4 and Li0.17La0.61TiO3, although small amounts of oxygen and titanium were found to have diffused between the materials. The Li0.17La0.61TiO3/LiMn2O4 film exhibited reversible electrochemical activity between 3.0 and 4.5 V. No significant structural changes were observed in the cycled film, indicating that the Li0.17La0.61TiO3/LiMn2O4 interface is chemically and electrochemically stable during the battery reaction. The integration of electrode and solid electrolyte oxides in epitaxial multi-layer structures is expected to allow the design of new configurations for all solid-state batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.