Abstract

Hesperidin is a flavonoid glycoside that is frequently found in citrus fruits. Our group have demonstrated that hesperidin has neuroprotective effect in 6-hydroxydopamine (6-OHDA) model of Parkinson's disease (PD), mainly by antioxidant mechanisms. Although the pathophysiology of PD remains uncertain, a large body of evidence has demonstrated that mitochondrial dysfunction and apoptosis play a critical role in dopaminergic nigrostriatal degeneration. However, the ability of hesperidin in modulating these mechanisms has not yet been investigated. In the present study, we examined the potential of a 28-day hesperidin treatment (50mg/kg/day, p.o.) in preventing behavioral alterations induced by 6-OHDA injection via regulating mitochondrial dysfunction, apoptosis and dopaminergic neurons in the substantia nigra pars compacta (SNpc) in C57BL/6 mice. Our results demonstrated that hesperidin treatment improved motor, olfactory and spatial memory impairments elicited by 6-OHDA injection. Moreover, hesperidin treatment attenuated the loss of dopaminergic neurons (TH+ cells) in the SNpc and the depletion of dopamine (DA) and its metabolities 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum of 6-OHDA-lesioned mice. Hesperidin also protected against the inhibition of mitochondrial respiratory chain complex-I, -IV and V, the decrease of Na + -K + -ATPase activity and the increase of caspase-3 and -9 activity in the striatum. Taken together, our findings indicate that hesperidin mitigates the degeneration of dopaminergic neurons in the SNpc by preventing mitochondrial dysfunction and modulating apoptotic pathways in the striatum of 6-OHDA-treated mice, thus improving behavioral alterations. These results provide new insights on neuroprotective mechanisms of hesperidin in a relevant preclinical model of PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.