Abstract

Flow of a Herschel-Bulkley (H-B) fluid in tubes of non-circular cross-section in investigated analytically. This study complements results presented in [1] where the equation of motion was solved in tubes of arbitrary cross-section for Bingham type of fluids, and the shapes of plug zones centered on the tube axis and stagnant zones attached to the corners were predicted when the cross-section is triangular and square. In this paper we investigate the effect of the power index in the H-B model on the flow for values greater and lesser than unity, considering thus the shear-thinning and shear-thickening effects, which could not be accounted for with the Bingham model. The equation of motion is solved when the cross-section is an equilateral triangle or a square by means of the shape factor method previously introduced in [2]. Thus, shear-thickening and shear-thinning effects are accounted for and related to the tube geometry in predicting the existence and the extent of undeformed regions in the flow field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.