Abstract

Abstract We investigated the 65, 71, 79, 84, 119, and 163 μm OH doublets of 178 local (0 < z < 0.35) galaxies. They were observed using the Herschel/Photoconductor Array Camera and Spectrometer, including Seyfert galaxies, low-ionization nuclear emission-line regions, and star-forming galaxies. We observe these doublets exclusively in absorption (OH71), primarily in absorption (OH65, OH84), mostly in emission (OH79), only in emission (OH163), and an approximately even mix of the both (OH119). In 19 galaxies we find P Cygni or reverse P Cygni line profiles in the OH doublets. We use several galaxy observables to probe spectral classification, brightness of a central active galactic nucleus (AGN)/starburst component, and radiation field strength. We find that OH79, OH119, and OH163 are more likely to display strong emission for bright, unobscured AGNs. For less luminous, obscured AGNs and nonactive galaxies, we find populations of strong absorption (OH119), weaker emission (OH163), and a mix of weak emission and weak absorption (OH79). For OH65, OH71, and OH84, we do not find significant correlations with the observables listed above. For OH79 and OH119, we find relationships with both the 9.7 μm silicate feature and Balmer decrement dust extinction tracers in which more dust leads to weaker emission/stronger absorption. The origin of emission for the observed OH doublets, whether from collisional excitation or from radiative pumping by infrared photons, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.