Abstract
In this article, we investigate orthogonal polynomials associated with complex Hermitean matrix ensembles using the combination of the methods of Coulomb fluid (or potential theory), chain sequences, and Birkhoff–Trjitzinsky theory. We give a general formula for the largest eigenvalue of the N×N Jacobi matrices (which is equivalent to estimating the largest zero of a sequence of orthogonal polynomials) and the two‐level correlation function for the α ensembles (α>0) introduced previously for α>1. In the case of 0<α<1, we give a natural representation for the weight function that is a special case of the general Nevanlinna parametrization. We also discuss Hermitean matrix ensembles associated with general indeterminate moment problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.