Abstract

BackgroundMitochondrial dysfunction has emerged as an important player in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a common cause of idiopathic interstitial lung disease in adults. Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder that causes a similar type of pulmonary fibrosis in younger adults, although the role of mitochondrial dysfunction in this condition is not understood.MethodsWe performed a detailed characterization of mitochondrial structure and function in lung tissues and alveolar epithelial cells deficient in the adaptor protein complex 3 beta 1 (Ap3b1) subunit, the gene responsible for causing subtype 2 of HPS (HPS-2).ResultsWe observed widespread changes in mitochondrial homeostasis in HPS-2 cells, including the acquisition of abnormally shaped mitochondria, with reduced number of cristae, and markedly reduced activity of the electron transport chain and the tricarboxylic acid cycle. We also found that mitochondrial redox imbalance and activity of the mitochondrial unfolded protein response were dysregulated in HPS-2 cells and this associated with various other changes that appeared to be compensatory to mitochondrial dysfunction. This included an increase in glycolytic activity, an upregulation in the expression of mitochondrial biogenesis factors and enhanced activation of the energy-conserving enzyme AMP-activated protein kinase.ConclusionIn summary, our findings indicate that mitochondrial function is dramatically altered in HPS-2 lung tissues, suggesting dysfunction of this organelle might be a driver of HPS lung disease.

Highlights

  • Idiopathic pulmonary fibrosis (IPF) is a highly aggressive form of lung disease that develops in older individuals and is generally refractory to existing pharmacological therapies [1,2,3,4,5]

  • Hermansky-Pudlak syn‐ drome (HPS)‐2 alters mitochondrial function and drives metabolic reprogramming in the alveolar epithelium To begin to assess the effects of HPS on mitochondrial function in the lung, we performed ultrastructural analyses to examine the morphology of mitochondria in AE2 cells from the lungs of C57B6/6J (WT) and Hermansky-Pudlak Syndrome type 2 (HPS-2) mice

  • Our decision to select HPS-2 mice was based on the understanding that mutations in adaptor protein complex 3 beta 1 (Ap3b1) are linked to HPS pulmonary fibrosis in humans and enhance the sensitivity to bleomycin in mice [20, 26, 32]

Read more

Summary

Introduction

Idiopathic pulmonary fibrosis (IPF) is a highly aggressive form of lung disease that develops in older individuals and is generally refractory to existing pharmacological therapies [1,2,3,4,5]. Patients with the Hermansky-Pudlak syndrome (HPS) develop a form of fibrotic lung disease that closely resembles IPF [11, 12]. HPS is a rare autosomal recessive disorder that affects approximately 1–9 per 1,000,000 individuals and results from bi-allelic variants in one of several different lysosomal trafficking genes [13]. Mitochondrial dysfunction has emerged as an important player in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a common cause of idiopathic interstitial lung disease in adults. Hermansky-Pudlak syn‐ drome (HPS) is a rare autosomal recessive disorder that causes a similar type of pulmonary fibrosis in younger adults, the role of mitochondrial dysfunction in this condition is not understood

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.