Abstract

In human Lyme disease, symptoms with widely varying levels of severity have been observed. A mouse model of Lyme disease has been developed which allows analysis of mice with mild, moderate, and severe pathologies after inoculation with the spirochete Borrelia burgdorferi. To determine whether the differences in symptoms reflect differences in the number of spirochetes persisting in affected tissues, a sensitive PCR technique was developed to detect B. burgdorferi DNA in virtually any tissue of an infected mouse. This analysis, which detects DNA from as few as three spirochetes, revealed the presence of B. burgdorferi DNA in many tissues from severely arthritic C3H/HeJ mice as early as 1 week postinfection. The heart, ear, and ankle were particularly heavily infected, although B. burgdorferi DNA was also detected in spleen, liver, brain, kidney, bladder, uterus, and lymph nodes. In contrast, much lower levels of spirochete DNA were detected in tissues of infected BALB/c mice, which develop less severe arthritis when infected with B. burgdorferi than do C3H/HeJ mice. This difference was evident throughout the 5-week analysis. A competitive PCR method allowed determination of the absolute number of spirochete gene sequences in infected tissues. Ankles and hearts from C3H/HeJ mice were found to harbor 10(7) copies of the B. burgdorferi ospA gene, while these tissues from BALB/c mice contained 5- and 10-fold less B. burgdorferi DNA, respectively. The genetic regulation of severe pathology was analyzed by infecting the offspring of a cross between C3H/HeJ and BALB/c mice. The F1 mice developed severe arthritis and contained high levels of Borrelia DNA in the heart and ankle, similar to the C3H/HeJ parent. These findings indicate that susceptibility to severe arthritis is a dominant trait and suggest that it may correlate with high levels of persisting spirochetes. Models of pathology in Lyme disease should take into consideration the fact that severity of pathology may be directly related to the number of organisms in infected tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.