Abstract

The herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) is a photosynthetic (photosystem II) inhibitor in plants. A gene, bxn, encoding a specific nitrilase that converts bromoxynil to its primary metabolite 3,5-dibromo-4-hydroxybenzoic acid, was cloned from the natural soil bacterium Klebsiella ozaenae. For expression in plants, the bxn gene was placed under control of a light-regulated tissue-specific promoter, the ribulose bisphosphate carboxylase small subunit. Transfer of this chimeric gene and expression of a bromoxynil-specific nitrilase in leaves of transgenic tobacco plants conferred resistance to high levels of a commercial formulation of bromoxynil. The results presented indicate a successful approach to obtain herbicide resistance by introducing a novel catabolic detoxification gene in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.