Abstract

AbstractThe interconversion of different types of entangled states not only can realize the information transmission but also play a significant role in quantum information technologies, including increasing scalability and computational power, and reducing error rates. Here, two protocols for achieving a complete interconversion between W state and Knill–Laflamme–Milburn state assisted by the quantum dot (QD)‐cavity systems and common quantum control gates are proposed. In particular, the protocols employ a heralded approach strategically designed to predict potential failures and facilitate seamless interaction between the QD‐cavity system and photons with the help of a single photon detectors, enhancing experimental accessibility. Through extensive analyzes and evaluations of two protocols, the proposed two protocols achieve remarkable utilization rates of photons (i.e., unit in principle) and achieve near‐unit fidelities and high efficiencies in principle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.