Abstract

The human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine kinase receptor and tumor-associated antigen abnormally expressed in various types of cancer, including breast, ovarian, and gastric cancer. HER2 overexpression is highly correlated with increased tumor aggressiveness, poorer prognosis, and shorter overall survival. Consequently, multiple HER2-targeted therapies have been developed and approved; however, only a subset of patients benefit from these treatments, and relapses are common. More potent and durable HER2-targeted therapies are desperately needed for patients with HER2-positive cancers. In this study, we developed a lipid nanoparticle (LNP)-based therapy formulated with mRNA encoding a novel HER2-CD3-Fc bispecific antibody (bsAb) for HER2-positive cancers. The LNPs efficiently transfected various types of cells, such as HEK293S, SKOV-3, and A1847, leading to robust and sustained secretion of the HER2-CD3-Fc bsAb with high binding affinity to both HER2 and CD3. The bsAb induced potent T-cell-directed cytotoxicity, along with secretion of IFN-λ, TNF-α, and granzyme B, against various types of HER2-positive tumor cells in vitro, including A549, NCI-H460, SKOV-3, A1847, SKBR3, and MDA-MB-231. The bsAb-mediated antitumor effect is highly specific and strictly dependent on its binding to HER2, as evidenced by the gained resistance of A549 and A1847 her2 knockout cells and the acquired sensitivity of mouse 4T1 cells overexpressing the human HER2 extracellular domain (ECD) or epitope-containing subdomain IV to the bsAb-induced T cell cytotoxicity. The bsAb also relies on its binding to CD3 for T-cell recruitment, as ablation of CD3 binding abolished the bsAb's ability to elicit antitumor activity. Importantly, intratumoral injection of the HER2-CD3-Fc mRNA-LNPs triggers a strong antitumor response and completely blocks HER2-positive tumor growth in a mouse xenograft model of human ovarian cancer. These results indicate that the novel HER2-CD3-Fc mRNA-LNP-based therapy has the potential to effectively treat HER2-positive cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.