Abstract

It has been suggested that hepatocytes have the ability to form bile ductal structures during normal development and in various pathological conditions of the liver. In the present study, we attempted to establish anin vitromodel of ductal morphogenesis of hepatocytic cells by combining an aggregate culture and a type I collagen gel culture. When spheroidal aggregates of rat or mouse primary hepatocytes were embedded within the collagen gel matrix and then cultured with a medium containing a fibroblast-conditioned medium, the aggregates extended many dendritic processes composed of a trabecular arrangement of cells. Dendritic morphogenesis was also seen in embedded aggregates of immortal liver epithelial cell lines, which spontaneously emerged during long-term cultures of mouse primary hepatocytes. A similar morphogenesis was induced by the presence of insulin in the medium. Although epidermal growth factor (EGF) and hepatocyte growth factor (HGF) showed only a small effect on the morphogenesis of most of the hepatocytic cells when used alone, these factors, especially EGF, enhanced the morphogenetic effect of insulin. Electron microscopical observations revealed luminal structures lined by microvilli within these dendritic processes, indicating ductal differentiation. Immunocytochemically, the dendritic processes were positive for cytokeratin 19, a marker for bile duct cells. On the other hand, an H-ras-transformed mouse liver epithelial cell line and rat hepatocellular carcinoma cell lines did not demonstrate the organized morphogenesis. Our results indicate that hepatocytic cells can produce bile duct-like structures in the presence of the type I collagenous matrix and soluble morphogenetic factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.