Abstract

M2-like polarized tumor-associated macrophages (TAMs) are the major component of infiltrating immune cells in hepatocellular carcinoma (HCC), which have been proved to exhibit significant immunosuppressive and pro-tumoral effects. However, the underlying mechanism of the tumor microenvironment (TME) educating TAMs to express M2-like phenotypes is still not fully understood. Here, we report that HCC-derived exosomes are involved in intercellular communications and exhibit a greater capacity to mediate TAMs' phenotypic differentiation. In our study, HCC cell-derived exosomes were collected and used to treat THP-1 cells in vitro. Quantitative polymerase chain reaction (qPCR) results showed that the exosomes significantly promoted THP-1 macrophages to differentiate into M2-like macrophages, which have a high production of transforming growth factor-β (TGF-β) and interleukin (IL)-10. The analysis of bioinformatics indicated that exosomal miR-21-5p is closely related to TAM differentiation and is associated with unfavorable prognosis in HCC. Overexpressing miR-21-5p in human monocyte-derived leukemia (THP-1) cells induced down-regulation of IL-1β levels; however, it enhanced production of IL-10 and promoted the malignant growth of HCC cells in vitro. A reporter assay confirmed that miR-21-5p directly targeted Ras homolog family member B (RhoB) 3'-untranslatedregion (UTR) in THP-1 cells. Downregulated RhoB levels in THP-1 cells would weaken mitogen-activated protein kinase (MAPK) axis signaling pathways. Taken together, tumor-derived miR-21-5p promote the malignant advance of HCC, which mediated intercellular crosstalk between tumor cells and macrophages. Targeting M2-like TAMs and intercepting their associated signaling pathways would provide potentially specific and novel therapeutic approaches for HCC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.