Abstract

Increasing evidence has suggested that hepatic lipid accumulation is associated with hepatic insulin resistance; however, the underlying mechanism is yet to be determined. It was demonstrated that the levels of microRNA-215 (miR-215) expression in the liver of rats fed a high-fat diet were significantly increased compared with rats on a control diet. Additionally, it was revealed via luciferase assays and western blotting that miR-215 targets rapamycin-insensitive companion of mammalian target of rapamycin (Rictor), an important protein in the hepatic insulin signalling pathway. Following overexpression of miR-215 in the H4IIE rat hepatocarcinoma cell line, it was reported that the intracellular insulin signalling pathway was inhibited; conversely, inhibition of miR-215 expression induced this pathway. Furthermore, it was demonstrated via reverse transcription-quantitative polymerase chain reaction analysis that free fatty acids promoted the expression of miR-215. The present study provided a novel mechanistic insight into the association between nonalcoholic fatty liver and hepatic insulin resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.