Abstract

Methanol and butanol were employed as selective substrates for catalase-H 2O 2 and alcohol dehydrogenase (ADH), respectively, in the perfused rat liver. As expected, rates of butanol metabolism accounted for over 85% of overall rates of alcohol oxidation indicating that ADH was the predominant pathway of alcohol metabolism in both the fed or fasted state in the absence of added substrate. In the fasted state, however, addition of oleate (1 mM) diminished butanol oxidation 20–25% yet increased rates of methanol oxidation over 4-fold. Under these conditions, methanol uptake accounted for nearly two-thirds of overall rates of alcohol oxidation. These data demonstrate that catalase-H 2O 2 is the predominant pathway of alcohol oxidation in the fasted state in the presence of fatty acids. Accordingly, it is concluded that diet and nutritional state play important roles in the contribution of the ADH and catalase pathways to alcohol oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.