Abstract
Hepatic cytochromes P450 (P450s) are monotopic endoplasmic reticulum (ER)-anchored hemoproteins that exhibit heterogenous physiological protein turnover. The molecular/cellular basis for such heterogeneity is not well understood. Although both autophagic-lysosomal and nonlysosomal pathways are available for their cellular degradation, native P450s such as CYP2B1 are preferentially degraded by the former route, whereas others such as CYPs 3A are degraded largely by the proteasomal pathway, and yet others such as CYP2E1 may be degraded by both. The molecular/structural determinants that dictate this differential proteolytic targeting of the native P450 proteins remain to be unraveled. In contrast, the bulk of the evidence indicates that inactivated and/or otherwise posttranslationally modified P450 proteins undergo adenosine triphosphate-dependent proteolytic degradation in the cytosol. Whether this process specifically involves the ubiquitin (Ub)-/26S proteasome-dependent, the Ub-independent 20S proteasome-dependent, or even a recently characterized Ub- and proteasome-independent pathway may depend on the particular P450 species targeted for degradation. Nevertheless, the collective evidence on P450 degradation attests to a remarkably versatile cellular sanitation brigade available for their disposal. Given that the P450s are integral ER proteins, this mechanistic diversity in their cellular disposal should further expand the repertoire of proteolytic processes available for ER proteins, thereby extending the currently held general notion of ER-associated degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.