Abstract
Automation of HEp-2 cell pattern classification would drastically improve the accuracy and throughput of diagnostic services for many auto-immune diseases, but it has proven difficult to reach a sufficient level of precision. Correct diagnosis relies on a subtle assessment of texture type in microscopic images of indirect immunofluorescence (IIF), which has, so far, eluded reliable replication through automated measurements. Following the recent HEp-2 Cells Classification contest held at ICPR 2012, we extend the scope of research in this field to develop a method of feature comparison that goes beyond the analysis of individual cells and majority-vote decisions to consider the full distribution of cell parameters within a patient sample. We demonstrate that this richer analysis is better able to predict the results of majority vote decisions than the cell-level performance analysed in all previous works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.