Abstract

Gemcitabine (GEM) chemotherapy, as the first-line regimen for pancreatic cancer, tends to induce drug resistance, which ultimately worsens the prognosis of patients with pancreatic cancer. Our previous study indicated a close correlation between pancreatic cancer progression and glucose metabolism, especially at the chemoresistant stage, highlighting the importance of the application of 18F-FDG PET dual-phase imaging in the early detection of pancreatic cancer. We speculate that glycolysis, participates in the development of chemoresistance in pancreatic cancer. In this article, we wanted to determine whether manipulating hENT1 expression in pancreatic cancer cells can reverse GEM chemoresistance and whether glucose transport and glycolysis are involved during this process. We found that hENT1 reversed GEM-induced drug resistance by inhibiting glycolysis and altering glucose transport mediated by HIF-1α in pancreatic cancer. Our findings also suggest that 18F-FDG PET dual-phase imaging after the 4th chemotherapy treatment can accurately identify drug-resistant pancreatic tumors and improve hENT1 reversal therapy. Our findings highlight that the dynamic observation of (retention index) RI changes from the beginning of treatment can also be helpful for evaluating the therapeutic effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.