Abstract

BackgroundThe STM CP-24 I centrifugal pump is a newly developed centrifugal pump for extracorporeal membrane oxygenation equipment. This study aimed to combine hydraulic experiments, hemodynamic numerical simulations, and standard in vitro hemolysis experiments to investigate the comprehensive performance of this centrifugal pump.MethodsIn vitro experiments were first done to obtain the pressure-flow data of the centrifugal pump in its working range to evaluate its hydraulic performance. Next, the commonly used clinical working points were selected as boundary conditions, and a computational fluid dynamics method was applied to evaluate its hemodynamic performance. The blood pressure distribution, blood flow fields, and high-wall-shear-stress zones in the centrifugal pump were determined as indicators for hemodynamic evaluation. Finally, standard in vitro hemolysis experiments were performed to test the blood compatibility of this centrifugal pump (n=3 blood samples). In addition, its blood compatibility was evaluated in the form of the normalized index of hemolysis (NIH).ResultsThe pressure-flow curve of the centrifugal pump showed that the head pressure and flow of the centrifugal pump showed a mostly linear relationship within the whole working range. When the rotation speed of the centrifugal pump was 5,500 rpm, it achieved a hydraulic performance of 550 mmHg head pressure and 8 L/min output flow, which could meet the clinical needs of extracorporeal membrane oxygenation. Analysis of computational fluid dynamics data indicated that the centrifugal pump had excellent hemodynamic performance: even distribution of blood pressure in the pump, no blood flow stagnation zone or dead zone in the overall flow field, and secondary flows in the gap between the rotor and the volute that significantly reduced the volume of the low-blood-flow zone close to the impeller. There was no obvious high-shear-stress zone on the surface of the volute or the impeller, which will effectively reduce the risk of thrombosis. In vitro hemolysis experiments indicated that the centrifugal pump had excellent blood biocompatibility, with a NIH =0.0125±0.0022 g/100 L.ConclusionsThe STM CP-24 I centrifugal pump has excellent hydraulic performance, a reasonable design of the hemodynamic structure of the blood pump, and excellent blood compatibility. Therefore, it can meet clinical needs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.