Abstract

OBJECTIVE: To investigate the cause of the hemodynamic changes occurring during opening of the bridge in venoarterial (VA) extracorporeal membrane oxygenation (ECMO). DESIGN: Prospective intervention study in animals. SETTING: Animal research laboratory of a university medical center. SUBJECTS: Eight anesthetized lambs installed on VA-ECMO. INTERVENTIONS: During VA-ECMO the bridge was randomly opened during 1, 2.5, 5, 7.5, 10, and 15 secs at ECMO flow rates of 500, 400, 300, 200, 100, and 50 mL/min. Flows in the ECMO circuit between venous cannula and bridge and bridge and arterial cannula, mean arterial blood pressure, mean left carotid artery blood flow, central venous pressure, superior sagittal sinus pressure, inline mixed venous oxygen saturation, heart rate, and arterial oxygen saturation were measured continuously. Using near infrared spectrophotometry, changes in concentrations of cerebral oxygenated and deoxygenated hemoglobin and cerebral blood volume were also measured. Values during bridge opening were compared with values before opening. The same variables were determined with a roller pump on the bridge with a flow over the bridge at various flow rates. MEASUREMENTS AND MAIN RESULTS: Bridge opening resulted in a change of flow direction between venous cannula and bridge and bridge and arterial cannula. A biphasic response with initial decrease and secondary increase occurred in mean arterial blood pressure and mean left carotid artery blood flow. Central venous pressure, superior sagittal sinus pressure, deoxygenated hemoglobin, and cerebral blood volume increased, whereas cerebral oxygenated hemoglobin decreased. These effects occurred in each combination of ECMO flow rate and opening time. These effects could be abolished by installing a roller pump on the bridge. CONCLUSIONS: Bridge opening in VA-ECMO resulted in significant cerebral hemodynamic changes caused by an arteriovenous shunt over the bridge. The decreased cerebral perfusion pressure may contribute to the occurrence of cerebral ischemia, and the venous congestion may result in intracranial hemorrhages. These could be prevented by installing a roller pump on the bridge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.