Abstract
To mask the antigenic sites of cells for cell therapies, especially for blood transfusion, we investigated the hemocompatibility of two poly(2-(dimethylamino)ethyl methacrylate-co-poly(ethyleneglycol) compared with that of the homopolymer without PEG. Our strategy relies on the potential ability of these copolymers to self-assemble at the erythrocyte surface. The cationic sequence of the copolymer should be able to interact with the glycocalyx by ionic interaction. The other sequence, based on a polyethyleneglycol moiety, should prevent both nonspecific interactions and specific recognition of the biological surface. The hemocompatibility of these copolymers was assessed by analyzing alterations in human erythrocyte membrane viscoelasticity, morphology, granularity, and aggregation. Their properties to mask ABO system and three erythrocyte glycophorin sites were investigated. No alterations in the erythrocyte morphology were observed by confocal microscopy. On the other hand, a partial masking of different specific glycophorin sites leads to future optimization of the macromolecular structures of these functionalized copolymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.