Abstract

Regulation of stem cells in adult tissues is a key determinant of how well an organism can respond to the stresses of physiological challenge and disease. This is particularly true of the hematopoietic system, where demands on host defenses can call for an acute increase in cell production. Hematopoietic stem cells receive the regulatory signals for cell production in adult mammals in the bone marrow, a tissue with higher-order architectural and functional organization than previously appreciated. Here, we review the data defining particular structural components and heterologous cells in the bone marrow that participate in hematopoietic stem cell function. Further, we explore the case for stromal-hematopoietic cell interactions contributing to neoplastic myeloid disease. As the hematopoietic regulatory networks in the bone marrow are revealed, it is anticipated that strategies will emerge for how to enhance or inhibit production of specific blood cells. In that way, the control of hematopoiesis will enter the domain of therapies to modulate broad aspects of hematopoiesis, both normal and malignant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.