Abstract

Helical Tomotherapy (HT) is a highly conformal image-guided radiation technique, introduced into clinical routine in 2006 at the Centro di Riferimento Oncologico Aviano (Italy). With this new technology, intensity-modulated radiotherapy (IMRT) is delivered using a helicoidal method. Here we present our dosimetric experiences using HT in 100 children, adolescents and young adults treated from May 2006 to February 2011. The median age of the patients was 13 years (range 1–24). The most common treated site was the central nervous system (50; of these, 24 were craniospinal irradiations), followed by thorax (22), head and neck (10), abdomen and pelvis (11), and limbs (7). The use of HT was calculated in accordance to the target dose conformation, the target size and shape, the dose to critical organs adjacent to the target, simultaneous treatment of multiple targets, and re-irradiation. HT has demonstrated to improve target volume dose homogeneity and the sparing of critical structures, when compared to 3D Linac-based radiotherapy (RT). In standard cases this technique represented a comparable alternative to IMRT delivered with conventional linear accelerator. In certain cases (e.g., craniospinal and pleural treatments) only HT generated adequate treatment plans with good target volume coverage. However, the gain in target conformality should be balanced with the spread of low-doses to distant areas. This remains an open issue for the potential risk of secondary malignancies (SMNs) and longer follow-up is mandatory.

Highlights

  • Cancer is the second commonest cause of death in children in the developed countries [1].Incidence rates of childhood cancer have risen over the last few decades

  • The Helical Tomotherapy (HT) plans were compared with conventional 3D plans and a decision considering both planning target volume (PTV)

  • We found that HT has the potential to improve the quality of the dose distribution both in terms of dose homogeneity within the PTV and

Read more

Summary

Introduction

Cancer is the second commonest cause of death in children in the developed countries [1]. Incidence rates of childhood cancer have risen over the last few decades. Cure rates have increased progressively over the last few years due to highly specific diagnostic procedures, the use of standardized chemotherapy protocols, recent studies which focused on the management of toxicities, as well as more sophisticated radiation treatments. Within the Italian population there are about. Long-term survivors in the pediatric population show an elevated risk for adverse events. The late effects in children, especially after RT, develop gradually over several months or years. They include neurocognitive deficiencies, cardiac toxicity, endocrinological problems, growth defects, and the development of secondary malignancies (SMNs).

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.