Abstract

The interaction between hydrogen bonds and conformational elastic degrees of freedom has been investigated using the simplest model of a double-strand DNA molecule. The hydrogen bonds are described in terms of two-level quantum systems. After excluding conformational degrees of freedom, one has effective interaction among two-level systems. In the ground state of an ideal double helix, hydrogen bonds in a DNA molecule also have a helical order induced by conformational degrees of freedom. The pitch of the hydrogen-bond helix (and even its sign under certain conditions) is different from that of the basic helix pitch and, generally speaking, is incommensurate with the latter. This effect can, possibly, lead to an inversion of the sign of the circular dichroism in spectral bands, which was detected in some experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.