Abstract

In some recent literature the role of non self-adjoint Hamiltonians, \(H\ne H^\dagger \), is often considered in connection with gain-loss systems. The dynamics for these systems is, most of the times, given in terms of a Schrödinger equation. In this paper we rather focus on the Heisenberg-like picture of quantum mechanics, stressing the (few) similarities and the (many) differences with respected to the standard Heisenberg picture for systems driven by self-adjoint Hamiltonians. In particular, the role of the symmetries, *-derivations and integrals of motion is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.