Abstract

The prostate is a developmental model system study of prostate growth regulation. Historically the research focus was on androgen regulation of development and growth and instructive interactions between the mesenchyme and epithelium. The study of Hh signaling in prostate development revealed important roles in ductal morphogenesis and in epithelial growth regulation that appear to be recapitulated in prostate cancer. This overview of Hh signaling in the prostate will address the well-described role of paracrine signaling prostate development as well as new evidence suggesting a role for autocrine signaling, the role of Hh signaling in prostate regeneration and reiterative activities in prostate cancer.

Highlights

  • The overall appearance and ratio of epithelium and stroma varies significantly between species but the basic mechanisms controlling prostate development appear to be conserved as evidenced by tissue recombination studies using mouse, rat, rabbit, and human prostate mesenchyme and epithelia [1]

  • The first morphological event in prostate development is budding of urogenital sinus epithelium (UGE) into the surrounding urogenital sinus mesenchyme (UGM)

  • This morphogenetic process results in a mature prostate with an intricate branched ductal system that consists of three paired lobes: the ventral prostate (VP), the anterior prostate (AP), and the dorsolateral prostate (DLP)

Read more

Summary

Prostate Development

The prostate is a male sex-accessory gland that contributes secretions to the ejaculate. The mouse prostate is comprised of a highly branched ductal network in a loose fibro-vascular stroma arranged into anterior, dorsolateral and ventral lobes. The first morphological event in prostate development is budding of urogenital sinus epithelium (UGE) into the surrounding urogenital sinus mesenchyme (UGM). This occurs in the mouse at embryonic day 16.5 (E16.5). During prenatal development, these epithelial buds elongate and form solid, unbranched ducts. The solid epithelial ducts elongate, canalize, and undergo branching morphogenesis. This morphogenetic process results in a mature prostate with an intricate branched ductal system that consists of three paired lobes: the ventral prostate (VP), the anterior prostate (AP), and the dorsolateral prostate (DLP). Each prostatic lobe has a distinct branching pattern [2]

Hedgehog Signaling in the Developing Prostate
Requirement for Prostate Development
Effects on Growth and Ductal Morphogenesis
Autocrine
Prostate Regeneration
Summary and Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.