Abstract

PurposeAlthough regular water is composed of two hydrogens and one oxygen, referred to as H2O, a small amount of water on this planet contains alternative forms of elements with different molecular weights because of the addition of neutrons. The present study was dedicated to studying the effect of heavy water (D2O), in which the two hydrogens become substituted by deuterium, on the cell physiology of different human cells with particular focus on malignant melanoma cells.MethodsCells were cultured in regular medium in which the content of H2O was gradually substituted by D2O or deuterium-depleted water (DDW). Following this, the changes of basic cellular parameters, such as morphology, migration, proliferation, cell cycle, apoptosis and microtubule integrity were examined.ResultsIt was found that raising the D2O content above the standard levels led to a concentration-dependent decrease in proliferation. Lowering the D2O levels below this level had no effect. Likewise, elevated D2O levels hampered migration. Moreover, cell-cycle analysis showed an increase of sub-G1 cells. Corroboratively, markers for apoptosis were induced (histone-associated DNA fragments, Bax, and PARP). In regard to microtubule integrity, only very high levels of D2O (75%) caused partial filament condensation.ConclusionD2O, although chemically identical with H2O, shows proapoptotic and antiproliferative effects on melanoma cells. These findings give a closer look of this interesting compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.