Abstract

The latest version (1999) of the BCR-sequential extraction technique was used to determine the distribution of metals (Cu, Zn, Cd, Pb, Fe, Ni, Cr, and Mn) with major sedimentary phases (acid-soluble, reducible, oxidisable and residual) in samples from the southwest coast of Spain. The total metal content was also determined. The results showed that an extensive area along the coast (35 km long), near the joint mouth of the Tinto and Odiel Rivers, contains sediments with high concentrations of metals, with maximums of 649 mg/kg of Zn, 336 mg/kg of Cu, 197 mg/kg of Pb and 2.5 mg/kg of Cd. The values found for Cr, Ni and Mn are comparable to those in unpolluted areas. Based on the chemical distribution of metals, we found that Zn is the most mobile (i.e., it can pass easily into the water under changing environmental conditions). This metal showed the highest percentages in the acid-soluble fraction (the most labile), especially in the central coastal area, where the samples contained over 50% of this element associated with this fraction. This area close to the Tinto and Odiel river mouths also shows a significant increase in the mobility of Cd and Cu. In both cases the amount present in the residual fraction is lower, and the acid-soluble fraction is increased for Cd and the oxidisable fraction for Cu. However, the highest percentages of Fe, Cr and Ni are found in the residual fraction (84%, 89% and 75%, respectively), which implies that these metals are strongly bound to the sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.