Abstract

Ludwigia stolonifera biomass of roots, floating roots and leaves were tested for their performance as heavy metal biofilters. Cadmium (Cd) and nickel (Ni) (50 ppm) solutions were filtered through 0.5–1.5 g packed columns with each biomaterial, to determine their metal removal efficiency. Root column was more efficient in removing Ni (as low as 6 ppb in the effluent) than of Cd (as low as to 22 ppb in the effluent). This tendency was also observed upon treatment of a mixed solution of both metals. Floating roots column reduced Cd content to the same level as the root column, but its metal binding capacity was higher; 93 mg Cd g-1 DW in floating roots in comparison to 43 mg Cd g-1DW in the roots biofilter. Leaf biomass column demonstrated the best metal binding capacity; 128 mg Cd g-1 DW, and Cd concentration in the effluent was 17 ppb. Pectin content was 5, 8 and 10% W/W in roots, leaves and floating roots biofilters, respectively. It seems that ion exchange is the major mechanism by which the metal is biosorbed. Evidence for the exchange of the bound heavy metal ions against the discharge of light metal ions such as calcium (Ca), magnesium (Mg), potassium (K) and sodium (Na) was provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.