Abstract

In order to improve the optical and mechanical performance of plastic ophthalmic lenses the use of surface coatings is necessary. However, the application of such coatings can be limited by bad adhesion to the substrate. One way to overcome this drawback is the use of a layered structure consisting of an adherent layer, an abrasion resistant hard layer and an antireflective (AR) multilayer (ML) stack. In this work we study the preparation of SiO x C y :H layered coatings to increase the mechanical durability of polymeric substrates and to accommodate gradually an external dielectric SiO 2/TiO 2 AR-ML. The coatings were grown by plasma assisted chemical vapor deposition (PACVD) using a mixture of hexamethyldisiloxane (HMDSO) and O 2. The possibility of producing the whole layered stack by adjusting the HMDSO:O 2 ratio was demonstrated. The composition and elemental profiles of the different layers were measured by ERDA using 35 MeV Cl-ions. A polymeric-like gradient layer could be formed followed by a buffer layer Si 28O 47C 15H 10 with a nearly constant composition. The variation of the elemental composition does not affect significantly the optical properties, which are close to that of SiO 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.