Abstract
Rapid heat cycle molding (RHCM) is a recently developed innovative injection molding technology. Rapid heating and cooling of the injection mold is the most crucial technique in RHCM because it not only has a significant effect on part quality but also has direct influence on productivity and cost-efficiency. Accordingly, Heating and cooling system design plays a very important role in RHCM mold design. This study focuses on the heating/cooling system design for a three-dimensional complex-shaped automotive interior part. Heat transfer simulation based on finite element analysis (FEA) was conducted to evaluate the thermal response of the injection mold and thereby improve heating/cooling channels design. Baffles were introduced for heating/cooling channels to improve heating/cooling efficiency and uniformity of the mold. A series of thermal response experiments based on full factorial experimental design were conducted to verify the effectiveness of the improved heating/cooling channels design with baffles. A mathematical model was developed by regression analysis to predict the thermal response of the injection mold. The effects of the cavity surface temperature on weld mark and surface gloss of the part were investigated by experiments. The results show that the developed baffle-based heating/cooling channels can greatly improve thermal response efficiency and uniformity of the mold. The developed mathematical model supplies an efficient approach for precise predication of mold thermal response. As the cavity surface temperature raises to a high enough level, automotive interior parts with high gloss and non-weld mark surface can be obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.